380 Trajectory Generation for Sensor - Driven and Time - Varying Tasks

نویسندگان

  • John Lloyd
  • Vincent Hayward
چکیده

In on-line robot trajectory generation, a connecting polynomial is normally used to remove discontinuities in velocity and acceleration between adjacent path segments. This article presents a new technique for performing such transitions in which adjacent path segments are "blended" together, with excess acceleration being removed using an estimate of the initial path velocities. Because this method requires no advance knowledge of the path segments, it can handle situations where the paths are changing with time (as when tracking sensor or control inputs). The method can also be used to adjust the spatial shape of the transition curve (such as to have it pass around or through the "via point"), which may be necessary to handle constraints imposed by different types of manipulator tasks. When the blended paths are nonlinear, it is possible to set a tight bound on the resulting transition acceleration. The blend technique works directly for vector trajectories and can be modified to handle 3-D rotational trajectories. A simple trajectory generation algorithm is presented as an illustration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model

A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...

متن کامل

Trajectory Generation for Sensor-Driven and Time-Varying Tasks

In on-line robot trajectory generation, a connecting polynomial is normally used to remove discontinuities in velocity and acceleration between adjacent path segments. This paper presents a new technique for performing such transitions in which adjacent path segments are “blended” together, with excess acceleration being removed using an estimate of the initial path velocities. Since this metho...

متن کامل

Optimal discrete-time control of robot manipulators in repetitive tasks

Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...

متن کامل

An LPV Approach to Sensor Fault Diagnosis of Robotic Arm

One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...

متن کامل

Optimal Trajectory Generation for Energy Consumption Minimization and Moving Obstacle Avoidance of SURENA III Robot’s Arm

In this paper, trajectory generation for the 4 DOF arm of SURENA III humanoid robot with the purpose of optimizing energy and avoiding a moving obstacle is presented. For this purpose, first, kinematic equations for a seven DOF manipulator are derived. Then, using the Lagrange method, an explicit dynamics model for the arm is developed. In the next step, in order to generate the desired traject...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006